Skip to main content

Posts

Showing posts from October, 2023

Statistical Inference I MCQ's with answers

 Statistical Inference Mcq's tomorrow i will add new questions Certainly, I'll be here to answer your question tomorrow. Feel free to ask whenever you're ready, and I'll provide you with the answer.

Correlation: B.Com. II Notes

 Correlation In previous blog we discussed about the measure central tendency and Dispersion to use to study the variable. the correlation is a statistical concept that allows us to measure and understand the relationship between two or more variables. it provided a valuable information about that variables. e.g. price and demand of commodity, income and expenditure of family, height and weight of group of persons. their we use the relation   between this two variables. in above examples we see the one variable increases other variable is also changes in same or opposite direction.  definition: Correlation is statistical tool which study the relationship between two or more variables. for analysis of correlation various method and techniques are used.  example: i. Demand and supply of product                                           ...

Method of Moment & Maximum Likelihood Estimator: Method, Properties and Examples.

 Statistical Inference I: Method Of Moment:   One of the oldest method of finding estimator is Method of Moment, it was discovered by Karl Pearson in 1884.  Method of Moment Estimator Let X1, X2, ........Xn be a random sample from a population with probability density function (pdf) f(x, θ) or probability mass function (pmf) p(x) with parameters θ1, θ2,……..θk. If μ r ' (r-th raw moment about the origin) then μ r ' = ∫ -∞ ∞ x r f(x,θ) dx for r=1,2,3,….k .........Equation i In general, μ 1 ' , μ 2 ' ,…..μ k ' will be functions of parameters θ 1 , θ 2 ,……..θ k . Let X 1 , X 2 ,……X n be the random sample of size n from the population. The method of moments consists of solving "k" equations (in Equation i) for θ 1 , θ 2 ,……..θ k to obtain estimators for the parameters by equating μ 1 ' , μ 2 ' ,…..μ k ' with the corresponding sample moments m 1 ' , m 2 ' ,…..m k ' . Where m r ' = sample m...