Skip to main content

Posts

Showing posts with the label statistical inference.

Statistical Inference Practical: Point Estimation by Method of Moment

 

Statistical Inference I MCQ's with answers

 Statistical Inference Mcq's tomorrow i will add new questions Certainly, I'll be here to answer your question tomorrow. Feel free to ask whenever you're ready, and I'll provide you with the answer.

Method of Moment & Maximum Likelihood Estimator: Method, Properties and Examples.

 Statistical Inference I: Method Of Moment:   One of the oldest method of finding estimator is Method of Moment, it was discovered by Karl Pearson in 1884.  Method of Moment Estimator Let X1, X2, ........Xn be a random sample from a population with probability density function (pdf) f(x, θ) or probability mass function (pmf) p(x) with parameters θ1, θ2,……..θk. If μ r ' (r-th raw moment about the origin) then μ r ' = ∫ -∞ ∞ x r f(x,θ) dx for r=1,2,3,….k .........Equation i In general, μ 1 ' , μ 2 ' ,…..μ k ' will be functions of parameters θ 1 , θ 2 ,……..θ k . Let X 1 , X 2 ,……X n be the random sample of size n from the population. The method of moments consists of solving "k" equations (in Equation i) for θ 1 , θ 2 ,……..θ k to obtain estimators for the parameters by equating μ 1 ' , μ 2 ' ,…..μ k ' with the corresponding sample moments m 1 ' , m 2 ' ,…..m k ' . Where m r ' = sample m...

Statistical Inference I ( Theory of Estimation) : Unbiased it's properties and examples

 📚Statistical Inference I Notes The theory of  estimation invented by Prof. R. A. Fisher in a series of fundamental papers in around 1930. Statistical inference is a process of drawing conclusions about a population based on the information gathered from a sample. It involves using statistical techniques to analyse data, estimate parameters, test hypotheses, and quantify uncertainty. In essence, it allows us to make inferences about a larger group (i.e. population) based on the characteristics observed in a smaller subset (i.e. sample) of that group. Notation of parameter: Let x be a random variable having distribution function F or f is a population distribution. the constant of  distribution function of F is known as Parameter. In general the parameter is denoted as any Greek Letters as θ.   now we see the some basic terms :  i. Population : in a statistics, The group of individual under study is called Population. the population is may be a group of obj...

Business Statistics Notes ( Meaning, Scope, Limitations of statistics and sampling Methods)

  Business Statistics Paper I Notes. Welcome to our comprehensive collection of notes for the Business Statistics!  my aim is to provided you  with the knowledge you need as you begin your journey to comprehend the essential ideas of this subject. Statistics is a science of collecting, Presenting, analyzing, interpreting data to make informed business decisions. It forms the backbone of modern-day business practices, guiding organizations in optimizing processes, identifying trends, and predicting outcomes. I will explore several important topics through these notes, such as: 1. Introduction to Statistics. :  meaning definition and scope of  Statistics. 2. Data collection methods. 3. Sampling techniques. 4. Measures of  central tendency : Mean, Median, Mode. 5. Measures of Dispersion : Relative and Absolute Measures of dispersion,  Range, Q.D., Standard deviation, Variance. coefficient of variation.  6.Analysis of bivariate data: Correlation, Regr...