Skip to main content

About Us

 

Welcome to Shree GaneshA Statistics, where we aim to make statistics simple and accessible for everyone!

 Our website is committed to offering high-quality, easily understandable content that teaches statistics. Our intention is to simplify complex ideas into clear, understandable explanations because we are aware that many individuals find statistics to be a difficult subject.

 We provide Study Material to everyone who wants to learn statistics, whether they are students, professionals, or just regular people. Our blog discusses a wide range of topics related to Statistics, 

 We Known that statistics is an essential tool for making informed decisions and understanding the world around us. That's why we're  providing our readers with the knowledge and skills they need to succeed in their studies.

 At Shree GaneshA Statistics, we believe that learning should be fun and engaging. That's why we use a some images to better understanding. and  help our readers understand statistical concepts.

We're constantly exploring for new methods to enhance our writing and give our readers even more access to facts. you have any comments or suggestions for us, do get in contact with me. 

We're here to assist you in learning statistics and achieving success in your studies or career.

 Thank you for visiting Shree GaneshA Statistics. We hope you find our content informative, engaging, and most importantly, helpful in your journey with statistics!


Comments

  1. I have seen all your blogs, you have explained all the concepts in a very nice and simple way. Keep posting such articles, all the best for future career.

    ReplyDelete

Post a Comment

Popular posts from this blog

Random Number Generator

Shree Ganesha Statistics Blog - Random Number Generator Shree Ganesha Statistics Blog Random Number Generator Number of Random Numbers: Minimum Limit: Maximum Limit: Type of Random Number: Integer Decimal Generate

MCQ'S based on Basic Statistics (For B. Com. II Business Statistics)

    (MCQ Based on Probability, Index Number, Time Series   and Statistical Quality Control Sem - IV)                                                            1.The control chart were developed by ……         A) Karl Pearson B) R.A. fisher C) W.A. Shewhart D) B. Benjamin   2.the mean = 4 and variance = 2 for binomial r.v. x then value of n is….. A) 7 B) 10 C) 8 D)9   3.the mean = 3 and variance = 2 for binomial r.v. x then value of n is….. A) 7 B) 10 C) 8 D)9 4. If sampl...

Basic Concepts of Probability and Binomial Distribution , Poisson Distribution.

 Probability:  Basic concepts of Probability:  Probability is a way to measure hoe likely something is to happen. Probability is number between 0 and 1, where probability is 0 means is not happen at all and probability is 1 means it will be definitely happen, e.g. if we tossed coin there is a 50% chance to get head and 50% chance to get tail, it can be represented in probability as 0.5 for each outcome to get head and tail. Probability is used to help us taking decision and predicting the likelihood of the event in many areas, that are science, finance and Statistics.  Now we learn the some basic concepts that used in Probability:  i) Random Experiment OR Trail: A Random Experiment is an process that get one or more possible outcomes. examples of random experiment include tossing a coin, rolling a die, drawing  a card from pack of card etc. using this we specify the possible outcomes known as sample pace.  ii)Outcome: An outcome is a result of experi...

Measures of Dispersion : Range , Quartile Deviation, Standard Deviation and Variance.

Measures of Dispersion :  I.  Introduction. II. Requirements of good measures. III. Uses of Measures of Dispersion. IV.  Methods Of Studying Dispersion:     i.  Absolute Measures of Dispersions :             i. Range (R)          ii. Quartile Deviation (Q.D.)          iii. Mean Deviation (M.D.)         iv. Standard Deviation (S. D.)         v. Variance    ii.   Relative Measures of Dispersions :              i. Coefficient of Range          ii. Coefficient of Quartile Deviation (Q.D.)          iii. Coefficient of Mean Deviation (M.D.)         iv. Coefficient of Standard Deviation (S. D.)         v. Coefficien...

Measures of Central Tendency :Mean, Median and Mode

Changing Color Blog Name  Measures of Central Tendency  I. Introduction. II. Requirements of good measures. III. Mean Definition. IV . Properties  V. Merits and Demerits. VI. Examples VII.  Weighted Arithmetic Mean VIII. Median IX. Quartiles I. Introduction Everybody is familiar with the word Average. and everybody are used the word average in daily life as, average marks, average of bike, average speed etc. In real life the average is used to represent the whole data, or it is a single figure is represent the whole data. the average value is lies around the centre of the data. consider the example if we are interested to measure the height of the all student and remember the heights of all student, in that case there are 2700 students then it is not possible to remember the all 2700 students height so we find out the one value that represent the height of the all 2700 students in college. therefore the single value represent ...

Index Number

 Index Number      Introduction  We seen in measures of central tendency the data can be reduced to a single figure by calculating an average and two series can be compared by their averages. But the data are homogeneous then the average is meaningful. (Data is homogeneous means data in same type). If the two series of the price of commodity for two years. It is clear that we cannot compare the cost of living for two years by using simple average of the price of the commodities. For that type of problem we need type of average is called Index number. Index number firstly defined or developed to study the effect of price change on the cost of living. But now days the theory of index number is extended to the field of wholesale price, industrial production, agricultural production etc. Index number is like barometers to measure the change in change in economics activities.   An index may be defined as a " specialized  average designed to measure the...

Time Series

 Time series  Introduction:-         We see the many variables are changes over period of time that are population (I.e. population are changes over time means population increase day by day), monthly demand of commodity, food production, agriculture production increases and that can be observed over period of times known as time series. Time series is defined as a set of observation arranged according to time is called time series. Or a time Series is a set of statistical observation arnging chronological order. ( Chronological order means it is arrangements of variable according to time) and it gives information about variable.  Also we draw the graph of time series to see the behaviour of variable over time. It can be used of forecasting. The analysis of time series is helpful to economist, business men, also for scientist etc. Because it used to forecasting the future, observing the past behaviour of that variable or items. Also planning for future...

Method of Moment & Maximum Likelihood Estimator: Method, Properties and Examples.

 Statistical Inference I: Method Of Moment:   One of the oldest method of finding estimator is Method of Moment, it was discovered by Karl Pearson in 1884.  Method of Moment Estimator Let X1, X2, ........Xn be a random sample from a population with probability density function (pdf) f(x, θ) or probability mass function (pmf) p(x) with parameters θ1, θ2,……..θk. If μ r ' (r-th raw moment about the origin) then μ r ' = ∫ -∞ ∞ x r f(x,θ) dx for r=1,2,3,….k .........Equation i In general, μ 1 ' , μ 2 ' ,…..μ k ' will be functions of parameters θ 1 , θ 2 ,……..θ k . Let X 1 , X 2 ,……X n be the random sample of size n from the population. The method of moments consists of solving "k" equations (in Equation i) for θ 1 , θ 2 ,……..θ k to obtain estimators for the parameters by equating μ 1 ' , μ 2 ' ,…..μ k ' with the corresponding sample moments m 1 ' , m 2 ' ,…..m k ' . Where m r ' = sample m...

B. Com. I. Practical No. 2 : Classification, tabulation and frequency distribution –II. Quantitative data.

  Shree GaneshA B. Com. Part – I: Semester – I OE–I    Semester – I (BASIC STATISTICS PRACTICAL-I) Practical: 60 Hrs. Marks: 50 (Credits: 02) Course Outcomes: After completion of this practical course, the student will be able to: i) Apply sampling techniques in real life. ii) Perform classification and tabulation of primary data. iii) Represent the data by means of simple diagrams and graphs. iv) Summarize data by computing measures of central tendency.   LIST OF PRACTICALS: 1. Classification, tabulation and frequency distribution –I: Qualitative data. 2. Classification, tabulation and frequency distribution –II : Quantitative data. 3. Diagrammatic representation of data by using Pie Diagram and Bar Diagrams. 4. Graphical representation of data by using Histogram, Frequency Polygon, Frequency Curve and     Locating Modal Value. 5. Graphical representation of data by using Ogive Curves and Locating Quartile Values....

B. Com. I (OE) Basic Statistics Practical 6. Simple random sampling (with and without replacement) and stratified random sampling.

  DEPARTMENT OF STATISTICS B. Com. I: Practical - I Expt. No. 6                                                                                        Date:     /     / 2024 Title: Sampling: Simple random sampling (with and without replacement) and stratified random sampling. Q.1 In population of size N=20, the observation were 4, 7, 10, 14, 17, 18, 20, 24, 25, 27, 29, 30, 34, 37, 39, 40, 42, 45, 47, 48. Draw Random Sample of size 5 form given population using SRSWOR. Q.2 In population of size N= 10, the observation ...