Skip to main content

Run test

 ONE-SAMPLE TESTS

RUN TEST

One of the fundamental assumptions of the parametric test is that the observed data are random and test statistic and the subsequent analysis are based on this assumption. It is always better to check whether this assumption is true or not.

A very simple tool for checking this assumption is run test. This section is devoted to throw light on the run test. Before discussing the run test first we have to explain what we mean by a “run”.

A run in observations, is defined as a sequence of letters or symbols of one kind, immediately preceded and succeeded by letters of other kind or no letters. For example a sequence of two letters H and T as given below:

HHTHTTTHTHHHTTT                                                                                                            

In this sequence, we start with first letter H and go up to other kind of letter, that is, T. In this way, we get first run of two H’s. Then we start with this T and go up to other kind of letter, that is, H. Then we get a run of one T and so on and finally a run of three T’s. In all, we see that there are eight runs. And it is denoted as r=8. it is shown as below.

HH T H TTT H  T HHH TTT                                                                                                  1   2   3   4     5   6  7         8

Under the run test we Judged randomness of observations by using number of runs in the observed sequence. Too few runs indicates that there is some clustering or trend and too large runs indicates that there is some kind of repeated or cycles according to some patterns.

for example, the following sequence of H's and T's is obtained when tossing a coin 10 times.

HHHHHHTTTT                                                                                                                        1             2 

in the above sequence we see there is only 2 run's of 6 heads and 4 Tails, hence from this we say the similar item tend to cluster together, therefore such sequence of observation is not considered as random. now the anther sequence of 10 tosses is as following:

H T H T H T H T H T                                                                                                        1  2  3 4 5   6  7 8 9 10 .

this numbers indicates the runs for all observation  in this sequence there are 10runs of 5 runs of one head each  and 5 runs of one tail each. this sequence is cloud not be considered as random because there are too many runs they indicates the pattern.

T HHH TT H T HH T HHH TT H T H T                                                                          1    2      3   4  5  6    7   8       9 10 111213 

Here neither the number of runs too small nor too large, this type of sequence may be considered as random. 

Assumptions: 

Run test make the following assumptions:

(i) Observed data should be such that we can categorise the observations into two mutually exclusive types.

 (ii) The variable under study is continuous.                    

Procedure for RUN test

Let X1,X2,...,Xn be a set of no observations arranged in the order in which they occur. Generally, we are interested to test whether a population or a sample or a sequence is random or not. So here we consider only two-tailed case. Thus, we can take the null and alternative hypotheses as

H0 :  The observations are random

H1 :  The observations are not random [two-tailed test]

test consist following steps:

Step 1: First of all, we check the form of the given dada that the given data are in symbolical form such as sequence of H and T, A and B, etc. or in the numeric form. If the data in symbolical form then it is ok, but if data in numeric form then first we convert numeric data in symbolical form. For this, we calculate median of the given observations by using either of the following formula given below             

Median = size of [(n+1) /2 ] th observation.           

provided observations should be either in ascending or descending order of magnitude.

After that, we replace the observations which are above the median by  a symbol ‘A’ (say) and the observation which are below the median by a symbol ‘B’ (say) without altering the observed order. The observations which are equal to median are discarded form the analysis and let reduced size of the sample denoted by n.

 

Step 2: Counts number of times first symbol (A) occurs and denote it by n1

 

Step 3: Counts number of times second symbol (B) occurs and denote it by n2 where, n = n1+n2

 

Step 4: For testing the null hypothesis, the test statistic is the total number of runs so in this step we count total number of runs in the sequence of symbols and denote it by R.

 

Step 5: Obtain critical values of test statistic corresponding n1,n2  at α % level of significance under the condition that null hypothesis is true.  From the Table  of critical value for run test is used to obtain respectively lower (RL) and upper (RU) critical values of the number of runs for a given combination of n1 and n2 at 5% level of significance.

Note1: Generally, critical values for run test are available at 5% level of

significance so we test our hypotheses for 5% level of significance.

Step 6: Decision Rule:

To take the decision about null hypothesis, the test statistic is compared with the critical (tabulated) values.

 

If the observed number of runs(R) is either less than or equal to the lower critical value (RL) or greater than or equal to the upper critical value (RU), that is, if R < RL or R > RU then we reject the null hypothesis at 5% level of significance.

 

If R lies between  Rl and Ru , that is,  Rl < R> Ru, then we Accept

 null hypothesis at 5% level of significance     

Comments

Post a Comment

Popular posts from this blog

MCQ'S based on Basic Statistics (For B. Com. II Business Statistics)

    (MCQ Based on Probability, Index Number, Time Series   and Statistical Quality Control Sem - IV)                                                            1.The control chart were developed by ……         A) Karl Pearson B) R.A. fisher C) W.A. Shewhart D) B. Benjamin   2.the mean = 4 and variance = 2 for binomial r.v. x then value of n is….. A) 7 B) 10 C) 8 D)9   3.the mean = 3 and variance = 2 for binomial r.v. x then value of n is….. A) 7 B) 10 C) 8 D)9 4. If sampl...

Measures of Central Tendency :Mean, Median and Mode

Changing Color Blog Name  Measures of Central Tendency  I. Introduction. II. Requirements of good measures. III. Mean Definition. IV . Properties  V. Merits and Demerits. VI. Examples VII.  Weighted Arithmetic Mean VIII. Median IX. Quartiles I. Introduction Everybody is familiar with the word Average. and everybody are used the word average in daily life as, average marks, average of bike, average speed etc. In real life the average is used to represent the whole data, or it is a single figure is represent the whole data. the average value is lies around the centre of the data. consider the example if we are interested to measure the height of the all student and remember the heights of all student, in that case there are 2700 students then it is not possible to remember the all 2700 students height so we find out the one value that represent the height of the all 2700 students in college. therefore the single value represent ...

Business Statistics Notes ( Meaning, Scope, Limitations of statistics and sampling Methods)

  Business Statistics Paper I Notes. Welcome to our comprehensive collection of notes for the Business Statistics!  my aim is to provided you  with the knowledge you need as you begin your journey to comprehend the essential ideas of this subject. Statistics is a science of collecting, Presenting, analyzing, interpreting data to make informed business decisions. It forms the backbone of modern-day business practices, guiding organizations in optimizing processes, identifying trends, and predicting outcomes. I will explore several important topics through these notes, such as: 1. Introduction to Statistics. :  meaning definition and scope of  Statistics. 2. Data collection methods. 3. Sampling techniques. 4. Measures of  central tendency : Mean, Median, Mode. 5. Measures of Dispersion : Relative and Absolute Measures of dispersion,  Range, Q.D., Standard deviation, Variance. coefficient of variation.  6.Analysis of bivariate data: Correlation, Regr...

Basic Concepts of Probability and Binomial Distribution , Poisson Distribution.

 Probability:  Basic concepts of Probability:  Probability is a way to measure hoe likely something is to happen. Probability is number between 0 and 1, where probability is 0 means is not happen at all and probability is 1 means it will be definitely happen, e.g. if we tossed coin there is a 50% chance to get head and 50% chance to get tail, it can be represented in probability as 0.5 for each outcome to get head and tail. Probability is used to help us taking decision and predicting the likelihood of the event in many areas, that are science, finance and Statistics.  Now we learn the some basic concepts that used in Probability:  i) Random Experiment OR Trail: A Random Experiment is an process that get one or more possible outcomes. examples of random experiment include tossing a coin, rolling a die, drawing  a card from pack of card etc. using this we specify the possible outcomes known as sample pace.  ii)Outcome: An outcome is a result of experi...

Classification, Tabulation, Frequency Distribution, Diagrams & Graphical Presentation.

Business Statistics I    Classification, Tabulation, Frequency Distribution ,  Diagrams & Graphical Presentation. In this section we study the following point : i. Classification and it types. ii. Tabulation. iii. Frequency and Frequency Distribution. iv. Some important concepts. v. Diagrams & Graphical Presentation   I. Classification and it's types:        Classification:- The process of arranging data into different classes or groups according to their common  characteristics is called classification. e.g. we dividing students into age, gender and religion. It is a classification of students into age, gender and religion.  Or  Classification is a method used to categorize data into different groups based on the values of specific variable.  The purpose of classification is to condenses the data, simplifies complexities, it useful to comparison and helps to analysis. The following are some criteria to classi...

Measures of Dispersion : Range , Quartile Deviation, Standard Deviation and Variance.

Measures of Dispersion :  I.  Introduction. II. Requirements of good measures. III. Uses of Measures of Dispersion. IV.  Methods Of Studying Dispersion:     i.  Absolute Measures of Dispersions :             i. Range (R)          ii. Quartile Deviation (Q.D.)          iii. Mean Deviation (M.D.)         iv. Standard Deviation (S. D.)         v. Variance    ii.   Relative Measures of Dispersions :              i. Coefficient of Range          ii. Coefficient of Quartile Deviation (Q.D.)          iii. Coefficient of Mean Deviation (M.D.)         iv. Coefficient of Standard Deviation (S. D.)         v. Coefficien...

Statistical Inference I ( Theory of estimation : Efficiency)

🔖Statistical Inference I ( Theory of estimation : Efficiency)  In this article we see the  terms:  I. Efficiency. II. Mean Square Error. III. Consistency. 📚 Efficiency:  We know that  two unbiased estimator of parameter gives rise to infinitely many unbiased estimators of parameter. there if one of parameter have two estimators then the problem is to choose one of the best estimator among the class of unbiased estimators. in that case we need to some other criteria to to find out best estimator. therefore, that situation  we check the variability of that estimator, the measure of variability of estimator T around it mean is Var(T). hence If T is an Unbiased estimator of parameter then it's variance gives good precision. the variance is smaller then it give's greater precision. 📑 i. Efficient estimator: An estimator T is said to be an Efficient Estimator of 𝚹, if T is unbiased estimator of    𝛉. and it's variance is less than any other estima...

The Power of Statistics: A Gateway to Exciting Opportunities

  My Blog The Power of Statistics: A Gateway to Exciting Opportunities     Hey there, future statistician! Ever wondered how Netflix seems to know exactly what shows you'll love, how sports teams break down player performance, or how businesses figure out their pricing strategies? The answer is statistics—a fascinating field that helps us make sense of data in our everyday lives. Let's dive into why choosing statistics for your B.Sc. Part First can lead you to some exciting opportunities.     Why Statistics Matters in Everyday Life     From predicting election outcomes and analyzing social media trends to understanding consumer behavior and optimizing public transport routes, statistics are crucial. It's the backbone of modern decision-making, helping us sift through complex data to uncover meaningful insights that drive innovation and progress.   The Role of Statistics in Future Opportunities ...

Statistical Inference I ( Theory of Estimation) : Unbiased it's properties and examples

 📚Statistical Inference I Notes The theory of  estimation invented by Prof. R. A. Fisher in a series of fundamental papers in around 1930. Statistical inference is a process of drawing conclusions about a population based on the information gathered from a sample. It involves using statistical techniques to analyse data, estimate parameters, test hypotheses, and quantify uncertainty. In essence, it allows us to make inferences about a larger group (i.e. population) based on the characteristics observed in a smaller subset (i.e. sample) of that group. Notation of parameter: Let x be a random variable having distribution function F or f is a population distribution. the constant of  distribution function of F is known as Parameter. In general the parameter is denoted as any Greek Letters as θ.   now we see the some basic terms :  i. Population : in a statistics, The group of individual under study is called Population. the population is may be a group of obj...